Selenium-Containing Heterocycles from Isoselenocyanates: Base-Catalyzed Reaction of Malononitrile with Phenyl Isoselenocyanate and Bromoacetonitrile or $\boldsymbol{\alpha}$-Halogenated Ketones

by Geoffroy L. Sommen ${ }^{1}$), Anthony Linden, and Heinz Heimgartner*
Organisch-Chemisches Institut der Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich
(phone: +41446354282; fax: +41446356836 ; e-mail: heimgart@oci.uzh.ch)

Abstract

The reaction of phenyl isoselenocyanate (1a) with malononitrile (= propanedinitrile) in DMF in the presence of $\mathrm{Et}_{3} \mathrm{~N}$ leads to the intermediate ketene N, Se-hemiacetal 6a, which can be trapped with bromoacetonitrile or α-halogenated ketones 12a and 12b (Scheme 3). The products are [(alkylseleno)(phenylamino)methylene]malononitriles $\mathbf{1 0}$ and $\mathbf{1 3}$, which are obtained in good yield. In the case of the (2-oxoalkyl)seleno derivatives $\mathbf{1 3}$, they are in equilibrium with the cyclic hemiacetals 14 . Chemical and spectroscopic evidence for the structures of the new compounds are described. The structure of 14a was established by X-ray crystallography.

1. Introduction. - In the last few years, it has been shown that isoselenocyanates $\mathbf{1}$ are versatile building blocks for the synthesis of selenium-containing heterocycles [14] and heterocyclic selones (see [5-6] and refs. cit. therein). For example, the reaction of $\mathbf{1}$ with nucleophiles of type $\mathbf{2}$, which also bear an electrophilic group, in the presence of a base gave either Se-containing heterocycles $\mathbf{4}$ with an imino group or N-containing heterocycles 5 with a selenoxo group (Scheme 1). A likely intermediate is 3, which undergoes a 5- or 6 -exo-tet cyclization [7] via the Se- and N -atom, respectively.

Scheme 1

Recently, we have shown that 'three-component reactions' of 1, cyanomethylene derivatives, and bis-electrophiles in the presence of a base yield 2-methylene-1,3-
$\left.{ }^{1}\right)$ Postdoctoral stay at the University of Zürich (08.2004-08.2005). Present address: Lonza Braine SA, Chaussée de Tubize 297, Bâtiment B8P2, 1420 Braine l'Alleud, Belgium; e-mail: geoffroy.sommen@lonza.com.
selenazolidine [8] and analogous 1,3 -selenazinane ($=$ tetrahydro- 1 H -1,3-selenazine) derivatives [9] (Scheme 2). For example, the reactions with 1,2-dibromoethane or 2bromoacetyl bromide yield 7, and the analogous reactions with 1,3-dibromopropane, 1,3-dichloroacetone, and 3-chloropropanoyl chloride, respectively, give the six-membered products $\mathbf{8}^{2}$) or $\mathbf{9}$. The crucial intermediate of these reactions is the $\mathrm{N}, \mathrm{Se}-$ hemiacetal 6 , which in all cases reacted with the bis-electrophilic reagent by double nucleophilic substitution.

Scheme 2

With the aim of further extending this concept, we carried out reactions of $\mathbf{1 a}(\mathrm{Ar}=$ Ph), malononitrile, and α-halogenated ketones or bromoacetonitrile.
2. Results and Discussion. - By following the previously described procedure [8][9], the intermediate 6a was generated in situ by treatment of a mixture of malononitrile and phenyl isoselenocyanate (1a) in DMF with an equimolar amount of $\mathrm{Et}_{3} \mathrm{~N}$ at room temperature (Scheme 3). After reaction with bromoacetonitrile, a brownish solid was isolated. On the basis of the spectroscopic data, structure $\mathbf{1 0}$ was assigned to this product. Obviously, 6a underwent an $S_{\mathrm{N}} 2$ reaction with bromoacetonitrile, but no subsequent cyclization to the expected (4-amino-1,3-selenazol-2(3H)ylidene)malononitrile $\mathbf{1 1}$ occurred (Scheme 3). All attempts to obtain a cyclized product by treatment of $\mathbf{1 0}$ with different bases failed and led to the decomposition of 10.

The CI-MS of $\mathbf{1 0}$ shows the base-peak at $m / z 306$, and the elemental analysis corresponds with the molecular formula $\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{4} \mathrm{Se}$, i.e., a product, which was formed by a substitution reaction of $6 \mathbf{a}$ and bromoacetonitrile. According to the IR- and ${ }^{13} \mathrm{C}$-NMR spectra, the product contains three CN groups (2212, 2201, and $2194 \mathrm{~cm}^{-1}$, and $\delta(\mathrm{C}) 115.1,114.9$, and 110.1, resp.). In the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum, a CH_{2} group absorbs at $\delta(\mathrm{H}) 4.38$ as a s, and a broad s at $\delta(\mathrm{H}) 13.85$ can be attributed to a NH group.
$\left.{ }^{2}\right)$ The crystal structure of $\mathbf{8}\left(\mathrm{Ar}=4-\mathrm{Cl}-\mathrm{C}_{6} \mathrm{H}_{4}, \mathrm{X}=\mathrm{O}\right)$ [9] was established also by X-ray crystallography (see below, Fig. and Table).

In the analogous reaction of $\mathbf{1 a}$ with malononitrile and α-bromoacetophenone (12a) or α-bromoacetone (12b), respectively (Scheme 3), the products were isolated as pale yellow crystals. Their data were consistent with the products of a substitution reaction of the intermediate $\mathbf{6 a}$ and the α-halogenated ketone $\mathbf{1 2}$, but inconsistent with the desired products 15 (Scheme 3). The IR data excluded ketone derivatives 13; however, the NMR and MS data were compatible with structures $\mathbf{1 3}$ and 1,3selenazolidine derivatives 14. Taking also the X-ray analyses (see below) into account, we propose that the products which were obtained from 1a, malononitrile, and α halogenated ketones $\mathbf{1 2}$ exist in the keto form $\mathbf{1 3}$ in solution but as the cyclic 'hemiacetal' $\mathbf{1 4}$ in the crystalline state. Again, treatment of 13a/14a with a base did not result in the elimination of $\mathrm{H}_{2} \mathrm{O}$ to give the desired compound 15 a but in the decomposition of the product.

In the IR spectrum (KBr), the products from 6 a and $\mathbf{1 2}$ show two signals for CN groups and a broad absorption at $3370-3400 \mathrm{~cm}^{-1}$, but no $\mathrm{C}=\mathrm{O}$ absorption. The ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra indicate clearly the presence of a $\mathrm{C}=\mathrm{O}$ group $(\delta(\mathrm{C}) 196.5$ and 206.0 for the products from 12a and 12b, resp.). Furthermore, in the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra, a s for a CH_{2} group appears at $\delta(\mathrm{H}) 3.69$ and 3.64 , respectively $(\delta(\mathrm{C}) 34.2$ and 36.7 in the ${ }^{13} \mathrm{C}$-NMR spectra). The CI-MS and elemental analyses are in accordance with products $\mathbf{1 3}$ or 1,3 -selenazolidines $\mathbf{1 4}$ but not with $\mathbf{1 5}$.

Finally, the structure of 14a was established by an X-ray crystal-structure determination (Fig.). In the crystal structure of 14a, the five-membered ring has an envelope conformation with atom $\mathrm{C}(5)$ as the envelope flap. Most of the geometric parameters are similar to those of the previously described structures of (1,3-
selenazolidin-2-ylidene)malononitriles 7 and a (1,3-selenazinan-2-ylidene)malononitrile 9 [8][9]: the two CN groups are almost coplanar with the atoms $\mathrm{Se}(1), \mathrm{C}(2), \mathrm{N}(3)$, and $\mathrm{C}(6)$, the $\mathrm{C}(2)=\mathrm{C}(6)$ bond is longer $(1.389(3) \AA$) than a normal $\mathrm{C}=\mathrm{C}$ bond, whereas the formal single bonds $\mathrm{Se}(1)-\mathrm{C}(2), \mathrm{N}(3)-\mathrm{C}(2), \mathrm{C}(6)-\mathrm{C}(7)$, and $\mathrm{C}(6)-\mathrm{C}(8)$ are short (1.894(2), 1.332(3), 1.424(3), and $1.428(3) \AA$, resp.). Furthermore, the bond angle $C(2)-C(6)-C(8)$ is larger than normal at $125.9(2)^{\circ}$, whereas the angles $C(2)-C(6)-C(7)$ and $C(7)-C(6)-C(8)$ are small (117.7(2) and 116.4(2) , resp.), i.e., the $\mathrm{CN}(8)$ group is tilted away from the $\mathrm{PhN}(3)$ residue. The OH group forms an intermolecular H -bond with one of the cyano N -atoms of a neighboring molecule. These interactions link the molecules into extended chains, which run parallel to the [001] direction and can be described by a graph set motif [11] of $C(8)$.

Figure. ORTEP Plots [10] of the molecular structures of a) $\mathbf{8}\left(\mathrm{Ar}=4-\mathrm{Cl}-\mathrm{C}_{6} \mathrm{H}_{4}, \mathrm{X}=\mathrm{O}\right)$ and b) $\mathbf{1 4 a}$. Arbitrary atom numbering; 50\% probability ellipsoids.

The heterocycle of $\mathbf{8}\left(\mathrm{Ar}=4-\mathrm{Cl}-\mathrm{C}_{6} \mathrm{H}_{4}, \mathrm{X}=\mathrm{O}\right)$ [9] has a distorted screw-boat conformation as shown by its crystal structure (Fig.). The geometric parameters are again mostly similar to those of $\mathbf{7 , 9}$, and $\mathbf{1 4}$ (e.g., a long $\mathrm{C}(2)=\mathrm{C}(7)$ bond (1.385(3) \AA) and short $\mathrm{Se}(1)-\mathrm{C}(2), \mathrm{N}(3)-\mathrm{C}(2), \mathrm{C}(7)-\mathrm{C}(8)$, and $\mathrm{C}(7)-\mathrm{C}(9)$ bonds (1.890(2), $1.351(2), 1.432(3)$, and $1.427(3) \AA$, resp.), as well as a tilting of the $\mathrm{CN}(8)$ group away from the aromatic residue (the bond angle $\mathrm{C}(2)-\mathrm{C}(7)-\mathrm{C}(8)$ is $124.9(2)^{\circ}$ and $\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(9)$ is $\left.115.1(2)^{\circ}\right)$. In contrast, however, the environment about the $\mathrm{C}=\mathrm{C}$ bond is not planar, the plane defined by atoms $\mathrm{C}(7), \mathrm{C}(8)$, and $\mathrm{C}(9)$ making an angle of $14.3(3)^{\circ}$ with the plane defined by atoms $\mathrm{N}(3), \mathrm{C}(2)$ and $\mathrm{Se}(1)$.

In conclusion, the three-component reaction of 1a, malononitrile, and bromoacetonitrile or α-halogenated ketones leads to the acyclic adducts $\mathbf{1 0}$ and $\mathbf{1 3}$, respectively, in good yield via the intermediate 6a. The ketone derivatives of type $\mathbf{1 3}$ are in equilibrium with the 1,3 -selenazolidine derivatives $\mathbf{1 4}$, which can be isolated in the crystalline form.

We thank the analytical units of our institute for spectra and analyses. Financial support of this work by the Dr. Helmut Legerlotz-Foundation and F. Hoffmann-La Roche AG, Basel, is gratefully acknowledged.

Experimental Part

1. General. See [12][13]. TLC: silica gel $60 F_{254}$ plates (0.25 mm ; Merck). Column chromatography (CC): silica gel 60 ($0.040-0.063 \mathrm{~mm}$; Merck). M.p.: Büchi B-540 apparatus, in capillaries; uncorrected. IR Spectra: Perkin-Elmer 1600 FT-IR spectrophotometer; in KBr; v in $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}-(300 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}$-NMR (75.5 MHz) Spectra: Bruker $A R X$ - 300 instrument; in CDCl_{3}; chemical shifts δ in ppm, J in Hz . CI-MS: Finnigan SSQ-700 or MAT-90 instrument; NH_{3} as carrier gas; in m / z.
2. Starting Materials. Propanedinitrile (=malononitrile) and all halogenated compounds are commercially available (Fluka). Phenyl isoselenocyanate (1a) was prepared according to Barton's procedure starting from formanilide [14], which is commercially available (Fluka, Aldrich).
3. Reaction of 1a, Malononitrile, and a Halogenated Compound: General Procedure. To a soln. of malononitrile $(73 \mathrm{mg}, 1.1 \mathrm{mmol})$ in DMF $(10 \mathrm{ml}), \mathrm{Et}_{3} \mathrm{~N}(0.15 \mathrm{ml}, 1.1 \mathrm{mmol})$ was added, and the mixture was stirred for 30 min at r.t. Then, $\mathbf{1 a}(200 \mathrm{mg}, 1.1 \mathrm{mmol})$ was added, and the mixture was stirred for 1 h at r.t. The halogenated compound (1.1 mmol) was added dropwise, the mixture stirred for 4 h , and the solvent evaporated. The crude product was purified by CC (hexane/AcOEt mixtures).

2-\{[(Cyanomethyl)seleno](phenylamino)methylene\}propanedinitrile (10). From 1a, malononitrile, and bromoacetonitrile: 234 mg (74%) of 10. Brownish crystals. M.p. 166-168 (AcOEt/hexane). IR (KBr): $2212 s, 2201 s, 2194 s, 1596 w, 1554 w, 1523 s, 1488 w, 1454 m, 1415 w, 1388 w, 1354 m, 1212 w, 1200 w$, $1166 w, 1105 w, 1054 w, 1022 w, 1008 w, 912 w, 905 w, 888 w, 754 w, 736 w, 705 w, 698 m .{ }^{1} \mathrm{H}-\mathrm{NMR}: 4.38\left(s, \mathrm{CH}_{2}\right)$; $7.40-7.45$ ($m, 2$ arom. H); 7.50-7.57 ($m, 3$ arom. H); 13.85 (br. s, NH). ${ }^{13} \mathrm{C}$-NMR: $29.1\left(\mathrm{CH}_{2}\right) ; 57.8$ $\left(C(\mathrm{CN})_{2}\right) ; 110.1,114.9,115.1(3 \mathrm{CN}) ; 128.9(2$ arom. CH $) ; 129.4(2$ arom. CH$) ; 130.8(1$ arom. CH$) ; 134.8$ (1 arom. C); $173.3(\mathrm{CNSe})$. CI-MS: $306\left(100,\left[M\left({ }^{80} \mathrm{Se}\right)+\mathrm{NH}_{4}\right]^{+}\right), 289\left(10,\left[M\left({ }^{80} \mathrm{Se}\right)+1\right]^{+}\right)$. Anal. calc. for $\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{4} \mathrm{Se}$ (287.18): C 50.19, H 2.81, N 19.51; found: C 49.95, H 3.02, N 19.63.

2-\{[(2-Oxo-2-phenylethyl)seleno](phenylamino)methylene\}propanedinitrile (13a)/2-(4-Hydroxy-3,4-diphenyl-1,3-selenazolidin-2-ylidene)propanedinitrile (14a). From 1a, malononitrile, and α-bromoacetophenone (12a): $326 \mathrm{mg}\left(81 \%\right.$) of 14a. Yellowish crystals. M.p. $155-157^{\circ}$ (AcOEt/hexane). IR (14a; $\mathrm{KBr}): 3397 s, 3055 w, 2211 s, 2196 s, 1598 w, 1554 w, 1518 s, 1490 m, 1450 m, 1421 w, 1392 w, 1346 m, 1212 m$, $1198 w, 1168 w, 1105 w, 1075 w, 1031 w, 1015 m, 1003 w, 984 w, 931 w, 907 w, 852 w, 764 w, 737 w, 707 w, 694 m$. ${ }^{1} \mathrm{H}-\mathrm{NMR}(13 a): 3.69\left(s, \mathrm{CH}_{2}\right) ; 6.76(d, J=7.9,1$ arom. H); $7.03(d, J=8.1,1$ arom. H); $7.12-7.25(m, 6$ arom. H); $7.44\left(t, J=8.1,2\right.$ arom. H); $10.68($ br. $s, N H) .{ }^{13} \mathrm{C}-\mathrm{NMR}(13 a): 34.2\left(\mathrm{CH}_{2}\right) ; 49.8\left(\mathrm{C}(\mathrm{CN})_{2}\right)$; 111.9, $118.2(2 \mathrm{CN}) ; 126.0(1$ arom. CH$) ; 126.5(2$ arom. CH$) ; 127.8(2$ arom. CH$) ; 128.3$ (2 arom. CH); 128.5 (2 arom. CH); 129.3 (1 arom. CH); 137.1, 139.6 (2 arom. C); 172.6 (CNSe); 196.5 (CO). CI-MS (14a): $385\left(100,\left[M\left({ }^{80} \mathrm{Se}\right)+\mathrm{NH}_{4}\right]^{+}\right), 368\left(10,\left[M\left({ }^{80} \mathrm{Se}\right)+1\right]^{+}\right)$. Anal. calc. for $\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{OSe}$ (366.28): C 59.02, H 3.58, N 11.47; found: C 58.91, H 3.58, N 11.47.

2-\{[(2-Oxopropyl)seleno](phenylamino)methylene\}propanedinitrile (13b)/2-(4-Hydroxy-4-methyl-3-phenyl-1,3-selenazolidin-2-ylidene)propanedinitrile (14b). From 1a, malononitrile, and α-bromoacetone (12b): $221 \mathrm{mg}(66 \%)$ of $\mathbf{1 4 b}$. Pale yellow crystals. M.p. $170-172^{\circ}$ (AcOEt/hexane). IR ($\mathbf{1 4 b} ; \mathrm{KBr}$): $3371 s, 2212 s, 2197 s, 1595 w, 1507 s, 1454 w, 1428 w, 1392 w, 1348 m, 1225 w, 1181 w, 1161 w, 1105 w, 1054 m, 999 w$, $953 w, 903 w, 851 w, 744 w, 694 m .{ }^{1} \mathrm{H}-\mathrm{NMR}(\mathbf{1 3 b}): 1.31(s, \mathrm{Me}) ; 3.64\left(s, \mathrm{CH}_{2}\right) ; 7.26-7.31$ ($\mathrm{m}, 2$ arom. H); $7.39-7.49(m, 3$ arom. H); 11.45 (br. $s, \mathrm{NH}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(\mathbf{1 3 b}): 25.8(\mathrm{Me}) ; 36.7\left(\mathrm{CH}_{2}\right) ; 47.7\left(\mathrm{C}(\mathrm{CN})_{2}\right)$; 112.0, $118.2(2 \mathrm{CN}) ; 129.0(2$ arom. CH$) ; 129.7(2$ arom. CH$) ; 130.0(1$ arom. CH$) ; 136.5$ (1 arom. C); 171.7 (CNSe); $206.2(\mathrm{CO})$. CI-MS (14b): $323\left(100,\left[M\left({ }^{80} \mathrm{Se}\right)+\mathrm{NH}_{4}\right]^{+}\right), 305\left(31,\left[M\left({ }^{80} \mathrm{Se}\right)+1\right]^{+}\right)$. Anal. calc. for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{OSe}$ (304.21): C 51.33, H 3.64, N 13.81; found: C 51.28, H 3.71, N 13.68.
4. X-Ray Crystal-Structure Determination of $\mathbf{8}\left(\mathrm{Ar}=4-\mathrm{Cl}-\mathrm{C}_{6} \mathrm{H}_{4}, \mathrm{X}=\mathrm{O}\right)$ and 14a (see Table and Fig. $)^{3}$). All measurements were made on a Nonius-KappaCCD diffractometer [15] by using graphite-
${ }^{3}$) CCDC-647556 and -647557 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via http:// www.ccdc.ac.uk/data_request/cif.
monochromated $\operatorname{Mo} K_{\alpha}$ radiation ($\lambda 0.71073 \AA$) and an Oxford-Cryosystems Cryostream- 700 cooler. Data reduction was performed with HKL Denzo and Scalepack [16]. The intensities were corrected for Lorentz and polarization effects, and an absorption correction based on the multi-scan method [17] was applied. Equivalent reflections were merged. Data collection and refinement parameters are given in the Table, and views of the molecules are shown in the Figure. The structure of $\mathbf{8}\left(\mathrm{Ar}=4-\mathrm{Cl}-\mathrm{C}_{6} \mathrm{H}_{4}, \mathrm{X}=\mathrm{O}\right)$ was solved by direct methods with SIR92 [18], which revealed the positions of all non-H-atoms. The nonH -atoms were refined anisotropically. The structure of $\mathbf{1 4 a}$ was solved by heavy-atom Patterson methods [19], which revealed the position of the Se-atom. All remaining non-H-atoms were located in a Fourier expansion of the Patterson solution, which was performed by DIRDIF 94 [20]. Non-H-atoms were refined anisotropically. The hydroxy H -atom of $\mathbf{1 4 a}$ was placed in the position indicated by a difference electron density map and its position was allowed to refine together with an isotropic displacement parameter. All remaining H -atoms and all H -atoms of $\mathbf{8}\left(\mathrm{Ar}=4-\mathrm{Cl}-\mathrm{C}_{6} \mathrm{H}_{4}, \mathrm{X}=\mathrm{O}\right)$ were placed in geometrically calculated positions and refined with a riding model where each H -atom was assigned a

Table. Crystallographic Data for Compounds $\mathbf{8}\left(\mathrm{Ar}=4-\mathrm{Cl}-\mathrm{C}_{6} \mathrm{H}_{4}, \mathrm{X}=\mathrm{O}\right)$ and 14a

	$8\left(\mathrm{Ar}=4-\mathrm{Cl}-\mathrm{C}_{6} \mathrm{H}_{4}, \mathrm{X}=\mathrm{O}\right)$	14a
Crystallized from	MeCN	AcOEt/hexane
Empirical formula	$\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{ClN}_{3} \mathrm{OSe}$	$\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{OSe}$
$M_{\text {r }}$	336.58	366.22
Crystal color, habit	yellow, prism	colorless, prism
Crystal dimensions [mm]	$0.07 \times 0.20 \times 0.27$	$0.23 \times 0.23 \times 0.25$
Temperature [K]	160(1)	160(1)
Crystal system	monoclinic	monoclinic
Space group	$P 2_{1} / n$	C2/c
Z	4	8
Reflections for cell determination	18890	218336
2θ range for cell determination [${ }^{\circ}$]	4-60	4-60
Unit cell parameters: $a[\mathrm{~A}]$	9.9940(2)	33.263(1)
$b[\AA]$	12.2053(2)	6.6722(2)
$c[\AA]$	11.4240(2)	14.6996(4)
$\beta\left[{ }^{\circ}\right]$	111.419(1)	109.014(2)
$V\left[\AA^{3}\right]$	1297.25(4)	3084.4(2)
$D_{\mathrm{x}}\left[\mathrm{g} \mathrm{cm}^{-3}\right]$	1.723	1.577
$\mu\left(\operatorname{Mo}_{\alpha}\right)\left[\mathrm{mm}^{-1}\right]$	3.092	2.441
Scan type	ϕ and ω	ϕ and ω
$\left.2 \theta_{(\text {max })}{ }^{\circ}\right]$	60	60
Transmission factors [min; max]	0.567; 0.811	0.498; 0.592
Total reflections measured	32822	37952
Symmetry-independent reflections	3786	4516
Reflections with $I>2 \sigma(I)$	3104	3627
Reflections used in refinement	3786	4516
Parameters refined	173	213
Final $R(F)(I>2 \sigma(I)$ reflections $)$	0.0310	0.0410
$w R\left(F^{2}\right)$ (all data)	0.0754	0.0993
Weighting parameters $[a ; b]^{\text {a }}$)	0.0338; 0.7475	0.0479; 2.9032
Goodness of fit	1.046	1.102
Secondary extinction coefficient	0.0024(6)	0.0052(3)
Final $\Delta_{\text {max }} / \sigma$	0.001	0.004
$\Delta \rho(\max ; \min)\left[\mathrm{e} \AA^{-3}\right]$	0.59; -0.68	0.61; - 0.75

$\left.{ }^{\text {a }}\right) w^{-1}=\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(a P)^{2}+b P$, where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
fixed isotropic displacement parameter with a value equal to $1.2 U_{\text {eq }}$ of its parent C -atom. The refinement of each structure was carried out on F^{2} by using full-matrix least-squares procedures, which minimized the function $\Sigma w\left(F_{\mathrm{o}}^{2}-F_{\mathrm{c}}^{2}\right)^{2}$. Corrections for secondary extinction were applied. Neutral-atom scattering factors for non- H -atoms were taken from [21a], and the scattering factors for H -atoms were taken from [22]. Anomalous dispersion effects were included in F_{c} [23]; the values for f^{\prime} and $f^{\prime \prime}$ were those of [21b]. The values of the mass attenuation coefficients are those of [21c]. All calculations were performed with the SHELXL97 [24] program.

REFERENCES

[1] Y. Zhou, A. Linden, H. Heimgartner, Helv. Chim. Acta 2000, 83, 1576.
[2] P. K. Atanassov, A. Linden, H. Heimgartner, Helv. Chim. Acta 2004, 87, 1452.
[3] G. L. Sommen, A. Linden, H. Heimgartner, Eur. J. Org. Chem. 2005, 14, 3128.
[4] M. Koketsu, T. Sakai, T. Kiyokuni, D. R. Garud, H. Ando, H. Ishikara, Heterocycles 2006, 68, 1607; D. R. Garud, M. Koketsu, H. Ishihara, Molecules 2007, 12, 504.
[5] P. K. Atanassov, A. Linden, H. Heimgartner, Helv. Chim. Acta 2004, 87, 1873.
[6] G. L. Sommen, A. Linden, H. Heimgartner, Heterocycles 2005, 65, 1903; F. Favero, G. L. Sommen, A. Linden, H. Heimgartner, Heterocycles 2006, 67, 749.
[7] J. E. Baldwin, J. Chem. Soc., Chem. Commun. 1976, 734.
[8] G. L. Sommen, A. Linden, H. Heimgartner, Tetrahedron 2006, 62, 3344.
[9] G. L. Sommen, A. Linden, H. Heimgartner, Helv. Chim. Acta 2007, 90, 472.
[10] C. K. Johnson, 'ORTEP II', Report ORNL-5138, Oak Ridge Natioal Laboratory, Oak Ridge, Tennessee, 1976.
[11] J. Bernstein, R. E. Davis, L. Shimoni, N.-L. Chang, Angew. Chem., Int. Ed. Engl. 1995, 34, 1555.
[12] P. K. Atanassov, Y. Zhou, A. Linden, H. Heimgartner, Helv. Chim. Acta 2002, 85, 1102.
[13] Y. Zhou, H. Heimgartner, Helv. Chim. Acta 2000, 83, 539.
$[14]$ D. H. R. Barton, S. I. Parekh, M. Tajbakhsh, E. A. Theodorakis, C.-L. Tse, Tetrahedron 1994, 50, 639; M. T. Bakhsh, Y. S. Behshtiha, M. M. Heravi, J. Chem. Soc. Pakistan, 1996, 18, 159.
[15] R. Hooft, KappaCCD Collect Software, Nonius BV, Delft, The Netherlands, 1999.
[16] Z. Otwinowski, W. Minor, in 'Methods in Enzymology', Vol. 276, 'Macromolecular Crystallography', Part A, Eds. C. W. Carter Jr. and R. M. Sweet, Academic Press, New York, 1997, p. 307.
[17] R. H. Blessing, Acta Crystallogr., Sect. A 1995, 51, 33.
[18] A. Altomare, G. Cascarano, C. Giacovazzo, A. Guagliardi, M. C. Burla, G. Polidori, M. Camalli, SIR92, J. Appl Crystallogr. 1994, 27, 435.
[19] P. T. Beurskens, G. Admiraal, G. Beurskens, W. P. Bosman, S. Garcia-Granda, R. O. Gould, J. M. M. Smits, C. Smykalla, PATTY: The DIRDIF Program System, Technical Report of the Crystallography Laboratory, University Nijmegen, The Netherlands, 1992.
[20] P. T. Beurskens, G. Admiraal, G. Beurskens, W. P. Bosman, R. de Gelder, R. Israel, J. M. M. Smits, DIRDIF 94: The DIRDIF Program System, Technical Report of the Crystallography Laboratory, University Nijmegen, The Netherlands, 1994.
[21] a) E. N. Maslen, A. G. Fox, M. A. O'Keefe, in 'International Tables for Crystallography', Ed. A. J. C. Wilson, Kluwer Academic Publishers, Dordrecht, 1992, Vol. C, Table 6.1.1.1, p. 477; b) D. C. Creagh, W. J. McAuley, in 'International Tables for Crystallography', Ed. A. J. C. Wilson, Kluwer Academic Publishers, Dordrecht, 1992, Vol. C, Table 4.2.6.8, p. 219; c) D. C. Creagh, J. H. Hubbell, in 'International Tables for Crystallography', Ed. A. J. C. Wilson, Kluwer Academic Publishers, Dordrecht, 1992, Vol. C, Table 4.2.4.3, p. 200.
[22] R. F. Stewart, E. R. Davidson, W. T. Simpson, J. Chem. Phys. 1965, 42, 3175.
[23] J. A. Ibers, W. C. Hamilton, Acta Crystallogr. 1964, 17, 781.
[24] G. M. Sheldrick, SHELXL97, Program for the Refinement of Crystal Structures, University of Göttingen, Germany, 1997.

